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Summary. The stress tensor of a polymeric system, solution or melt, is the sum 
of "single molecule" terms which may be expressed as integrals involving the 
distribution function in the phase space of a single molecule and "intermolecu- 
lar" terms which involve the distribution function in the configuration space of 
pairs of molecules. The evaluation of the single molecule terms is usually based 
on the solution of the "diffusion" equation in the configuration space of a single 
molecule. In the present development, an analogous "diffusion" equation in the 
configuration space of a pair of molecules is developed. The development is 
based on a generalization of the "time-smoothing" ideas introduced by Kirk- 
wood. Expressions are obtained for the various friction coefficients as time 
correlation functions. 
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1. Introduction 

The theory of the rheological behavior of polymeric systems involves a statistical 
study of the behavior of the polymeric molecules and that of the solvent 
molecules, if any. Most of the developments of these theories are "mean field" 
theories in which the environment of a particular polymeric molecule, which is 
made up of all the other polymeric molecules and the solvent molecules, is 
idealized as a continuous background, usually a continuous Newtonian fluid. An 
essential problem is then the determination of the distribution functions in the 
configuration spaces of the single polymeric molecules. 

The statistical expression for the stress tensor is an ensemble average. If the 
forces are derivable from potentials of the form described in the following, a 
portion of this term, the "single molecule term" may be written in terms of a 
distribution function in the phase space of a single molecule; the remaining terms 
involve the distribution functions in the configuration spaces of pairs of 
molecules of the same or different species. In most treatments, only the single 
molecule terms are considered. In the present discussion, we develop an equation 
for the time evolution of the pair configuration space distribution functions. 
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Approximations to these functions will lead to more accurate expressions for the 
stress tensor and thus for the various rheological properties. In general, the 
notation of Ref. [1] is used. 

2 .  T h e  s y s t e m  

Let r ~i be the vector to the center of mass of molecule, i, of species, 0~. The 
configuration coordinates of the system are taken to be the set of vectors, r "i, and 
the sets of generalized coordinates, Q~;, associated with each of the molecules. 
The conjugate momenta are denoted p ' i  and P~. These coordinates denoted 
collectively as x ~ represent the subset of the phase space coordinates of the 
entire system which describe the dynamical state of molecule i of species ~. It is 
also convenient to let x, represent the coordinates of a phase space of a single 
molecule of species ~. 

The distribution function in the phase space of the full system, indicated 
simply by x is denoted by f (x ,  t) and is normalized to unity: 

f f (x ,  t) dx = 1 (2.1) 

We then define a dynamical variable, B(x), in the full space as: 

B(x) = ~ 6(x ~i - x~)f(x ~ -  x~) (2.2) 
t j  

where 6(x ~ - x~) represents a product of f-functions in the variables indicated. 
The average of a dynamical variable, such as B(x), over the ensemble 

described by the distribution function f (x ,  t) is denoted by: 

( B(x) ) = .[ B(x)f(x, t) dx (2.3) 

It follows directly from the definition (see Eq. (17.3-3) of Ref. [1]), that the 
average the dynamical variable defined by Eq. (2.2): 

( B(x) ) = f~l~ (x~, xa, t) (2.4) 

is the distribution function in the phase space of a pair of molecules of species 
a and ft. 

The distribution function in the configuration space of a pair of molecules is 
the integral of this function over all the conjugate momenta: 

r ~, Qa, t) = _ff(~(x~, xt~, t) dp ~ dP ~ ap p dP t~ (2.5) 7/(~ (r ", a ' ,  

It is frequently convenient to change variables from the pair r ~ and r a to the pair 
R ~a and r. The vector: 

R ~ = r ~ - r ~ ( 2 . 6 )  

is the vector from the center of mass of a molecule of species ~ to that of a 
molecule of species r,  and r is the vector to the center of mass of the two molecule 
system. The pair phase space distribution function expressed in terms of these 
variables is denoted f ~ ( r ,  R, Q~, Qt~,p~, p~,p/J, pp, Q, and the corresponding 

(2) r ~ # configuration space distribution function is denoted 7J~a ( , R, Q , Q , t). 
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The distribution function in the phase space of a single molecule is: 

f~(x~, t) = ~ (6(x ~ i -  x~)) (2.7) 
i 

and the distribution function in the configuration space of a single molecule is: 

7J~(x~, t) = .f f~(x~, t) dR ~ dP ~ (2.8) 

As in the usual treatments [1], we take the total potential energy of the 
system, o(r), to be the sum of contributions from intermolecular effects, 4, from 
intramolecular effects, the ~b ~;, and external effects, the qb(e)~;: 

~(r) = ~ + ~ (tk=, + ~b(e),,) (2.9) 
cti 

The total intermolecular potential energy of the full system is taken to be the 
sum of terms associated with all pairs of molecules: 

= (1/2) Z ~i'~J (2.10) 
~,i, f l j  

We then take the potential energy associated with a pair of molecules of species 
and fl to be the sum of terms associated with interactions between all pairs of 

"beads" making up the two molecules: 

~ = Z ~v°~ (2.11) 
,uv 

The potential, ~ ~=~, which describes the force acting between bead v of a molecule 
of species ~ and bead # of a molecules of species fl is assumed to depend only on 
the distance between the particular pair of beads: 

= Inv°  I (2 .12 )  

where 

R~°~ = r .  ~ - r :  (2 .13 )  

is the vector from bead ev to bead fl#. 
The intramolecular potential associated with a molecule of species e, q~ ~, is 

taken to be a function of the internal coordinates, Q~, only, and the potential 
associated with external forces, ~b (e~, is taken to be a function the Q~ and the 
position of center of mass, r% 

The force on the center of mass of a molecule of species c~ due to the 
interaction of bead ev and bead fl/~ is then: 

F:~ - =~ (2.14) 

and the total force on the center of mass due to the interactions of bead cry with 
the beads of a molecule of species fl is: 

= Z (2.15) 
,u 

Then the total force on a molecule of species ~ due to the beads of a molecule 
of species fl is: 

r~'a = Z F~ a (2.16) 
v 
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Finally, the total force on molecule ~i is: 

F(T)~i = F(e)~i + E F~Xi'flJ 
#J 

where 

(2.17) 

The intramolecular term is: 

. ~ e  _ 0 =a ( 2 . 1 9 )  
#v 

~,~ - q$= (2.20) 
OQ~ 

and the effects of external potentials are given by: 

~ ( e ) ~  __ 1~ (e)~ ( 2 . 2 1 )  
OQ~ 

The total generalized force on molecule c~i is then: 

~(T)a i  -- ai JF ~(e)ezi jr_ E ~ ~i,flj (2.22) 
13j 

Next, we define a "hydrodynamic force", in the phase space of a single 
molecule, on bead v of a molecule of species a by the relation: 

rT~%(x=, t) = Y, [ I I[ 'F~f~(r, n, Q=, Q~, v =, s '=, v ~, pc, t) dR dQP @~ aP~ 
fl JOJO 

(2.23) 

An integration of this equation over the momentum coordinates leads to: 

F~h)'Tt~(r ~, Q~, t) = ~ If[" ~ ~(2 F v 7*~(r, R, Q% Qa, t) dQ ~ dR (2.24) 
333 

where F(~ )~ is the hydrodynamic force, in the configuration space, on bead v of 
a molecule of species a, defined by Eq. (18.1-18) of Ref. [1]. 

In the present treatment, it is convenient to define a similar average force, the 
"coupling force", as an average force, in the phase space of a pair of molecules 
of species ~ and fl, on bead v of a molecule of species ~, due to all of the molecules 
other than the particular pair. Explicitly, this force is defined by the relation: 

~ . I"  ~(3  t)dx, (2.25) 

where f(~r(x=, x~, x~, t) is the contracted distribution function in the phase space 
of three molecules defined in a manner similar to that o f f~ (x= ,  xe, t) by Eq. (2.4). 
From this definition, it follows that: 

F(n)~fl£(2,)(~c xa, t ) = ~  fF~ia(x=i-x~)a(xBJ-x#)f(x,t)dx (2.26) 

0 
F(e)ai = __ Or ¢~i ~ (e)~i (2.18) 

is the external force on the molecule. 
It is also convenient to define a set of generalized forces (which lead to changes 

in the orientations and internal configurations of the molecules). First, we have 
the intermolecular contribution: 
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This force arises in the following developments. 
We note that in the limit that the molecules ~ and fl are far separated, 

that is that Ir a - r  ~ ] ~ ~ ,  the coordinates of the molecules are uncorrelated so 
that: 

Furthermore, if this is true and if the forces are of sufficiently short range, 
contributions to the integral on the right of Eq. (2.25) arise only when fl is also 
far from 7 and thus we may replace f~r(x~, xa, x~, t) in the integrand on the 
right of Eq. (2.25) by the product f~2~(x~, x~, t)f~(xa, t). Thus, in the limit, that 

It then follows from Eq. (2.23) that in this limit: 

that is, the dynamical state of the molecule of species fl affects this coupling force 
on the molecule of species ct only if it is sufficiently close the molecule of species 

3. The pair distribution function 

To develop an equation for the time evolution of the pair distribution function, 
we follow a development similar to that of section 17.5 of Ref. [1]. It follows 
directly from the Liouville equation that, in general: 

where B(x) is an arbitrary dynamical variable in the phase space of the full 
system and 5¢ is the Liouville operator of the system. We then find that using the 
dynamical variable, B, defined by Eq. (2.2), this general equation of change, 
becomes: 

where F~ " ~  is the coupling force defined by Eq. (2.25), ~e~ is the Liouville 
operator of an isolated pair of molecules of species, e and fl: 

and L~°~ ° is the Liouville operator of an isolated molecule of species, ~, including 
the effects of the intramolecular and external potentials. The ~ are vector 
operators defined as: 

(3.2) 

(3.1) 

(3.3) 

(3.4) 
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where the b~ are the base vectors defined as: 

and my is the mass of bead v of a molecule of species ~. Equation (3.2) with F~")~ a 
and F~ ")p" set to zero is the Liouville equation of an isolated pair of molecules of 
species ~ and/3. The forces, F~ ")~ and F~ ")~, describe the coupling of a typical 
pair of such molecules with the remaining portion of the system, that is, with the 
environment. Equation (3.2) is simply an integral of the Liouville equation of the 
system and thus is exact. The "truncation problem" which is discussed in the 
following is that of obtaining approximate expressions for the coupling forces, and 
the method used is a generalization of that which leads to the usual "diffusion" 
equation for the distribution function in the configuration space of a single 
polymeric molecule. 

In an important series of papers, Kirkwood [2] developed a basic approach 
to the statistical mechanical theory of the nonequilibrium behavior of fluids. 
Kirkwood considered primarily systems made up of molecules idealized as mass 
points and obtained explicit expressions for the stress tensor and other statistical 
quantities as integrals involving contracted distribution functions. Our previous 
development [1] of the expression for the stress tensor of a system containing 
polymeric molecules is largely an extension to systems of more complex molecules 
of the approach used by Irving and Kirkwood [3]. The integral expressions are 
exact, within the limitations of the molecular models. The essential problem which 
introduces irreversibility, is that of obtaining a "closed" equation for the time 
evolution of the pertinent distribution functions. 

Kirkwood [2] introduced arguments which led to the conclusion that irre- 
versibility enters the equations through a "time-smoothing". This time-smoothing 
is over a time interval, z, which is small on a macroscopic time scale but long on 
the scale of molecular events. This time-smoothing leads to equations for the 
hydrodynamic forces which are similar in form to those which are usually 
introduced through a "Stokes' law" type of empricism. In an earlier paper [4], these 
ideas were used to develop the usual [1] "diffusion equation" in the configuration 
space of a single molecule and expressions for the "friction coefficients". Here we 
generalize these ideas to the configuration spaces of pairs of molecules. 

Introducing the time-smoothing ideas, we average Eq. (3.2) over a previous 
time interval of duration, z, starting at the "present" time. The result is an equation 
of very similar form: 

8 ~(2)'~7(2)/x x ~.F(")'aT~2)tx x t ) - ~ . P  ~")a'~(2)t~ ~ t) g / +  =,, =, 8,  t )  = - Z ,  , . , = , , ,  =, ,,, , , 

(3.6) 

in which the pair distribution function, ¢~2)tx xa ,  t), is replaced by the time- 
smoothed function: 

f (2 )r~  t) 1 [' . ~ t ~ . ,  xa ,  = - f~2~(x. ,  xa ,  t --  t ' )  a t '  (3.7) 
T 3 0  

and the coupling force is replaced by the time-smoothed force defined by: 

l~(r/)~fl .,~(2) £~ t) 1 I ~ v J~ l~  t-".c~, Xl~,  - -  - F (n)°q~f(2)) ¢ x  - z 3 0  ~ - ~ t ~  , ~,  x a ,  t - t ' )  d t "  (3.8) 
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It follows from the definition, Eq. (2.25), that this force may also be written in 
the form: 

~ B v , ~ , x ~ ,  - i l v a ~ t . ~ , x p ,  x ~ , t - t ' ) d x ~ d t "  (3.9) 

or in terms of the distribution function in the phase space of the full system, as: 

(r/)ccflT(2)/~ t) 12 fo' f , j ~ a  ~ ,  xa ,  - - f~ ' ib(x  "i - x ~ ) b ( x  aj - x a ) f ( x ,  t - t ' )  d x  dt" 

(3.10) 

where F~ ~ is the intermolecular force on bead v of molecule ei. 
The essential approximation which leads to the decoupling of the equation 

for the pair distribution function from that of the higher order distribution 
functions is an approximation for the ensemble distribution function. In the 
present development, we again [4] generalize the ideas introduced by Kirkwood 
[2]. In evaluating the term in the sum of the right of Eq. (3.10) associated with 
a particular pair of values of i and j, we take as an approximation to the 
ensemble distribution function: 

f ( x ,  t) _r(2),- o~i flj . .  feq(X, t) 
- j ~ t x  , x , t) c(e) ~ x~j,  t) (3.11) 

J e t f l , e q  ,, 

where f~q(X, t) and f(~.~q(X ~i, x aj, t) are the equilibrium ensemble and pair distri- 
bution functions characteristic of the local macroscopic conditions. In this 
approximation, the dependence of the ensemble distribution on the coordinates 
of molecules, ei and f l j  is exact but the dependence on the coordinates of the 
remaining molecules in the system is that determined by local equilibrium 
conditions. This approximation is analogous to the mean field ideas which are 
usually used in the developments of theories of polymeric systems as indicated in 
the previous development [4], but now it is a pair of molecules (rather than a 
single molecule) in the "mean field" of the remaining molecules. 

Since 

where 

and 

f ( x ,  t - -  t ' )  =f(xo,  t) (3.12) 

f~q(Xo, t) =f~q(X, t) (3.14) 

we find on expansion, that, to terms of first order in the time displacements: 

1- f ( ~ ( x = i '  xpj '  t) 
x n ~ i - - ~ - - ~ j  )~ (3.15) 

J ~ f l , e q  ~, , , ] 

where sums over the coordinates x ~i and x Bj are implied. 
Next, we define the time averages associated with the various coordinates 

and momenta, collectively, as: 

Xo = e C ~ x  (3.13) 
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= 1 ~ i r , , a : _  xtJj) dt" (3.16) 
(~/'aJ z k T  - v  ~ o  

where T is the local temperature. These quantities are functions in the phase 
space of the complete system. 

It follows from Eq. (3.13) that: 

(x~ j - x p:) = (e c-~ -- l)x t~: (3.17) 

which may be rewritten in the integral form: 

fo (Xg j --  X 'Oj) = et"~(~o~fi'x ~j) dt"  ( 3 . 18 )  

When this integral form is used in the definition of the (~i,~j, Eq. (3.16), and the 
order of the time integrals interchanged, one finds that: 

(~¢"¢: = k---T 1 - F ~ i ( e t Z x  l~j) d t  (3.19) 

One may now take the limit that z ~ ~ .  We thus find that the ~ ~;'a: are the time 
correlation functions: 

1 F~i(e t '~xP:) dt  (3.20) ~i, f l j  = k-T 

We next define an average friction coefficient, as a function in the phase 
space of a pair of molecules of species e and fl by relation: 

¢(,)~'?(2)t.. x/~,t)=~ f ~:i'pJb(x~i-- x~)6(xaJ xa)f(x, t) dx 

k T l l f o ° °  ) 
- .~ [F~ 't et '~L#xtJ:]6(x ~ - x ~ ) 6 ( x  ~j - xtj ) d t  (3.21) 

where the angular brackets, ( . . . ) ,  indicate an average over the ensemble 
distribution function. The superscripts are the species indices of the two factors 
in the definition of the ~;'aJ, Eq. (3.16). This definition is similar to the definition 
of the force F~ ")~p by Eq. (2.25). The factors, £ # x  aj, in the integrand of this 
expression are specifically: 

~ r  ~ j  = p #J/m/~ ( 3 . 2 2 )  

~q~a #sj = Z ustat/'~fl PflJ ( 3 . 23 )  
t 

£#p~J = F (r)t~j (3.24) 

g" et~Je ~j O---~- PJ (3.25) .,~p~s j = : ( T ) ~ j  --  2 ~ t u OO#s j Gtu 

where F <T)Èj and the ~ r )B j  are the total force and total generalized forces 
defined by Eqs. (2.17) and (2.22), respectively. It is to be expected that little 
correlation occurs between the forces and the momenta and hence in the 
following we neglect the (~")~ associated with the configuration coordinates. 

When the expression for the distribution function, f ( x ,  t - t ' ) ,  Eq. (3.15), is 
used in the expression for F~)~', Eq. (3.10), one finds that: 

(r/)~flT(2)/v t) = F(°~"#(~)rx t) F( , ,~)~ 7(2):~ ~ t) + .  • • v Jcq~ ~-~ ~ X//, v J~/3 ~, ~, X/3, "~- v J~/~ ~,~'~, ~/~, 
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where 

F~"")~ = k T [((~")~ ?---~ 4- r(")~p O~] ln f (~ (x ' '  x~' "~ ~?xtd f(~,eq(X~, X~, t) (3.26) 

and the sums on the right implied by the notation, x~, involve only the momentum 
coordinates. The term, F(~ "'l)~ is the "hydrodynamic force" on bead v of a 
molecule of species ~ as a function in the phase space of a pair of molecules. One 
thus sees that the effect of the time smoothing is to add this hydrodynamic term. 

The equation for the time evolution of the time-smoothed pair distribution 
function, Eq. (3.6), then becomes: 

O t T ~ e f  ; J e f l k  e ,  v v j ~ f l k ~ ,  XB, v " --v J e f k ~ e ,  Xfl, 

= _ ~ ~ ~ . --~(~'~)~t~(2) t , . s ~  ~ ,  x~, t) -- ~ ~ ( .  --~tc("'a)~7~2)t~J~¢~, ~ ,  t) (3.27) 
v v 

On comparing this with Eq. (3.2), one sees that the effect of the time-smoothing 
is essentially that of adding the terms involving the "hydrodynamic forces" F~ ~'1)'~ 
and F~ "'1)~. The problem of obtaining a closed equation for the pair distribution 
function then becomes that of evaluating the friction coefficients, the (~o,~. 

4. The "diffusion" equation 

We next consider the contraction of the problem to the configuration spaces of 
pairs of molecules. First, the time-smoothed configuration distribution function 
is defined as: 

~ c(2)rx t)dp~dP~dpt~dP tJ (4.1) ~(~(r~, Q~, r ~, Qt~, t) = j j ~  ~, x~, 

We then define averages in the configuration space of pairs by: 

["  "~a~(~(r ~, Q~, r/3, Qa, t) = f (" " ) f  ~a7(2) (x~, xa, t) dp ~ dP ~ dp ~ dP p (4.2) 

Then on integrating the equation for the time evolution of the time-smoothed pair 
distribution, Eq. (3.27), over all the momentum coordinates, one obtains the 
equation of continuity: 

Ot ~2~(r~' Q~' rt~' Qa' t) -~ m ~ Or ~ u_e ~ --~/Jv , Q', ra, QP, t) 

1 
+ - ~  ~r~ " ~pa~a¢(~(r ~, Q~, r t~, Qa, t) 

OQ, 

G ~ W p ~ ( 2 ) t r  ~ + ~ O Q ]  ~ta t~ ~o, ,Q~,rB, Qa, t ) = 0  (4.3) 

Next, we multiply the same equation successively by the various momentum 
coordinates and again integrate over all the momenta to obtain two sets of 
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equations, which may be interpreted as equations of motion in the configuration 
space of pairs of molecules. First, we define a "generalized Brownian" force, 
ff<b),/j, by the relation: 

~e~ ~/j~(~Z~(r~, Q~, r/j, Q/J, t) 

1 
+ - ~  fffir~ . Wp P~ ~ ~ ( r  , Q~, r/j, Qa, t) 

1 O 
-~ m ~ Or~j" ~PaP~ ~'/J~(~(r~' Q~' r/j, Q/J, t) 

", : ,  Q/J, t) 
+ ~  c3Qt 

+ ~, ~ G/J TV P/3 P~-n~/J~P(22(r~, Q~, r/J, Qa, t) 
tu OQ~ tua , ~ ~o, 

1~--~// 0 G "~ 

(4.4) 

Then, on multiplying Eq. (3.27) by P,= and integrating, we find that: 

~ ! b ) a / j  .q_ ~ ( ( a ) ~  .3ff ~ ( e ) a  ..~ ~(a)c t / j  .31_ ~(sh)ctfl = 0 (4.5) 

where 

1 
~a)~/j = ~ / j  + ~ ~ b ~ .  ~F~)~/J~ (4.6) 

, (m, )  
and 

~h)~/j = ~ ~ b ~ s l  • F(~ h)'/J (4.7) 

where 

F(h)~# tit (2) I'r ~x f i l l  v _~p,_ , Q~, r/j, Q/J, t) = F~"'l)~/jf(f~(x~, x/j, t) dp ~ dP ~ dp/j dP ~ (4.8) 

Equation (4.5) is an effective force balance in the configuration space of a pair 
of molecules of species a and fl associated with coordinate Q~. The term .~(a)~/j 
is the sum of an effective force associated with the direct interaction with a 
molecule of species fl and a term associated with the interaction with all the o t h e r  
molecules of species ft. The last term on the left of Eq. (4.5) is the "hydro- 
dynamic force", which arises from the terms on the righ t of Eq. (3.27). If  we 
assume, as an approximation, that the ~)~/j are independent of the momentum 
coordinates, we find that: 

f(h)~/j _ k T~,(a)~ ~ (2) t) + k T (7  )~/J . lnf(~.eq(X~, x/j, t) . . . . . .  " lnf~/j,eq (x~, xtb 

~ lnf(~,~q(X~,X/j,t) + k T ~ ( ( ~  ~/J lnf~,~q(X~,X/j,t) 
s II s 

(4.9) 
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where 

(;o ) ~7 )~r = (1/kT) .2 F~ i et~eF rj dt (~(X ai - -  Xct)6(X flj - -  Xfl) (4.10) 
u e q  

(f0 ) = .. F~ e (~P~ d t r ( xa~-x~ )6 (x rJ -xa )  (4.11) 
, j  e q  

i" (a)a~ The friction tensors, ,~r ( ~ ,  and the vectors, ,,~ , are functions in same space, 
given by similar expression, with F rj replaced by F ~i and P~J replaced by P2L 

Next, we define the total Brownian force, F (blur, on a molecule of  species a by: 

F(b)~r t~ (2) [ra 0 - --~rt ,Qa, rr, Qr, t )=f f - t~P~ar~(~(¢ ,Qa,  rr, Qr, t) 

1 d +~; ~__~. ~¢pq,r¢~(¢, Or, ,r, O r, t) 

1 +-~ S;~ " ~ / p q a r ~ ( r ,  Or, ,.r, O r, t) 

O ~a ~p~,,a~r~(2)tr~ Q~, r r, Qr, t) + ~  aQ-~'~t~ t e l l  ark  , 

+~ ~Q~,,~ , e  ~ ~ar~ , Qa, rr ,  Qr ,  t) 

(4.12) 

Then in an analogous fashion, on multiplying Eq. (3.27) by p~ and integrating 
we find that: 

F (b)=¢ + F (e)ar + F (~)ar + F (h)ar = 0 (4.13) 

where 

and 

F(a)ar = Earl "[- 2 ~I?(tl)afl~ (4.14) 
v 

F(h)~r = Z F~ h)ar (4.15) 
v 

Equation (4.13) is a force balance, similar to Eq. (4.5), involving total forces on 
the center of  mass of  the molecule of  species a. 

The equilibrium distribution function in the phase space of  pairs is well-known 
to be of  the form: 

f(2) t x t) c~r,eq \ a ,  Xr, =f~,eq(X~, t)fr,eq(Xr, t) exp(-~(a)ar /kT)  (4.16) 

where ~(a)ar, the potential of average force between the molecules, is a function 
in the configuration space only. Since the dynamical states of two molecules which 
are far apart are uncorrelated, this function has the property that: 

• (a)~r ~ 0  (4.17) 

as [ g [ ~  oo. The function fa,eq (Xa, t) is the equilibrium distribution function in the 
phase space of  single molecule of species a. This function is of the form: 

fa,eq (X~, t) -----= ( 1/Joqeq)F-.a,eq exp[ - (q5 a + ~)(e)~)/kT ] (4.18) 
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where J~,~q is the normalization constant, which is fixed by the condition that: 

f f,,~q(X~, t) dQ ~ dp ~ dP ~ = n~ (4.19) 

the number density of  molecules of  species, ~. For simplicity, we assume that the 
temperature, T, of the system is uniform in space, but we will assume that the 
stream velocity, r(r, t), is a function of  both space and time. We then take the 
momentum factor, '--~ct,eq, t o  be: 

"~ce,eq = exp 

where 
E' l - 2 ~  ~ m~0;~ -- v~) 2 

v 
(4.20) 

is the stream velocity at bead v of  a molecule of species ~. 
Next, let us consider the expression for F(~ ")~a given by Eq. (2.25), evaluated 

at equilibrium. First, we find from that relation and Eq. (4.15) that: 

g(a'°~f(2~,eq(Xct, Xfl, t)~ gct[3f(~2~,eq(Xct, Xfl, t) -- ~tj ;[O~i~ 1 
x 6(x ~i - x~)6(x aj - xa)f(x, t ) e  q dx (4.22) 

It then follows from the form of the equilibrium distribution function in the full 
phase space that: 

k T ~ ; f ( x ~ i - x ~ ) 6 ( x t J J - x a ) ( ~ f ( x , t ) e q ) d x  

F(a)~l~l ¢(2) t x t) (4.23) L X f l ,  
A-.q, 

From this it follows that: 

[--O~-g (¢~ + ¢(e)~)+ F(a)~lf(~,,.q(X~, x~, t) 

= - k T ~ ( ~ f ( x ~ i - x ~ ) ) 6 ( x P J - x a ) f ( x , t ) ~ q d x  

:kT ~ ~ij ;(~(X°a--Xct)(~(XflJ--x~)f(x, t)eq dX 

= kT~f~2~,oq(X~, xa, t) (4.24) 

One then finds from the expression for f~,eq(X~, x/~, t), Eq. (4.16), that: 

F (a)~# = - -  - -  • (a)~p ( 4 . 2 5 )  
Or • 

In a similar manner, it may be shown from Eq. (4.6).that: 

(a)cql = __ _ _  ~ (a)~fl ( 4 . 2 6 )  ~Q~ 

v~ = v(r~, t) (4.21) 
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That is, at equilibrium, the potential ¢(a)~p, defined by Eq. (4.16), leads to the 
average forces F (~a and ~ ) ~ P  defined by Eqs. (4.6) and (4.14). 

Using the form of the equilibrium pair distribution function given by Eq. 
(4.16), the expression for the hydrodynamic force, Eq. (4.9), becomes: 

F~ h)~ = - ~  (m~u/m~)~ ~)~ . (~i'~ ~ ~ -- v~) -- ~ (m~/mP)(~ ")~ " (~ i '~  ~p -- v~) 
p I a 

/*st 

- -  E (rlafl'~ 1/2('r*=/~ Y(a)~,Sh~ • ( ~ # ~ , 8 - - 1 ) ~ )  (4.27) 
k " ~ l a ]  ~ s t ~ v s  ~ # t  

just 

If the flow field is homogenious, that is, if: 

where x is independent of  the space coordinate, r, the last expression for the 
hydrodynamic force reduces to: 

F~ " ~  = - ~ 7 ~ "  [ [ i ~  ~ - ~ ( ~ ,  01 - ~ 7 ~  • [~i~ ~ - v ( ~ ,  01 

- - E  (m~)l/2G~t~(a)~b~t " [~R~ ~# -- ~" R~I 
/zst 

--~/. ,°"#ltnaa~l/2(7~ff~stsvsr ~)~ t./~., • [//~u~ ~ ~a -- x" Ru~ ] (4.29) 
#st 

It is now convenient to change variables from the coordinates of  the centers 
of  mass of the two molecules, r ~ and r a, to the center of  mass of  the two 
molecule system: 

r = (m~r ~ + mara)/m (4.30) 

where 

m = m ~ + m  ~ (4.31) 

is total mass of  the pair, and the vector between the centers of  mass, R, de- 
fined by Eq. (2.6) (to simplify the notation we no longer introduce the super- 
scripts). 

The equation of  continuity, Eq. (4.3), then becomes: 

0 . ~ p ~ ( r ~  ' Q~, r~ ' O~, t) 

. ~ / ~ a ~ ( r - ,  Q~, ra, QB, t) +~ 

+ ~ - ~  Q~, rP, QB, t) 

0 Ft~a~a~(z)/, ,  Q~, r¢, Qt~, t) 0 (4.32) + ~ s  # ll~,~s II ~ # ~ . "  , = 

and the expression for the hydrodynamic force, Eq. (4.27), becomes: 
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and the expression for the hydrodynamic force, Eq. (4.27), becomes: 

t(h)ccfl = __(~(a)aa _~_ ~(a)afl) . ( ~ , ~ c ¢ f l _ v ( r  ' t ) )  -q- ~(a)~ca - - m  ~a)exfl . ( ~ R ~ c ¢ [ 3 _  ~ .  R )  

. . . .  , . ~  ,~ - ~c : M~) - ~ (4.33) 
s s 

where 

M~ = ~ (m~) , /2~ p~h~ (4.34) ~ st ~* i t o  #t 
#t 

The last result may be used in the expression for the generalized hydrodynamic 
forces, ~-~h)~, Eq. (4.7), and the total hydrodynamic forces, F (h)~B, 
Eq. (4.15) to obtain a set of  linear equations which determine the momentum 
averages, ~ ,  ~ / ~ ,  and ~{)~ ~ .  These may then be solved for the momentum 
averages and the force balances, Eqs. (4.5) and (4.13) then used in the resulting 
expressions. The result is a set of  expressions which may be used in the equation 
of continuity, Eq. (4.3), to obtain a closed equation for the time evolution of  the 
distribution function, ~P(~(r ~, QL r ~, Q~, t). In the following, we develop these 
ideas in a particular limiting approximation which will appear to be analogous to 
that of neglecting "hydrodynamic interaction effects". 

5. Scalar friction coefficients 

It follows from Eq. (4.10) that: 

where 

,u 

(fo ) (~,)~ = lkT ~ _~Fcti ~o'~F Ès_. dt 6(x ~i - x~)6(x Èj - x , )  (5.2) 
e q  

We next consider the expression for ((v a)~p, Eq. (4.11). The expression for LPP~: 
is given by Eq. (3.25). If  we again neglect the correlations between the forces and 
momenta, we may neglect the terms in the sum. Then if we take the base vectors, 
b~s, to be constant or neglect the effect of  the Liouville operator, ~ ,  on these 
vectors, we find that: 

((~])"~ = 2 (m~) -l/2~'(a)~tfl . , ~ U  b~  (5.3) 
/ t  

Then to illustrate the development of a closed equation for ~(~(r  ~, QL r ¢, QP, t) 
we will take: 

~(~>~P = 6~pfv,~6 (5.4) 

where (~ is a constant. It will appear, later, that this approximation is equivalent 
to neglecting hydrodynamic interaction among beads on the same molecule, the 
fi,, factor, and among beads of  different molecules, the 6~a factor. We will also 
assume that all the beads of a particular species of molecules are of the same mass. 

m~ = m (b)~ (5.5) 



Polymeric systems: time evolution of pair distribution function 89 

We then find from Eqs. (4.7) and (4.33) that: 

(f)~ = - 3~p (~ ~/m (b)~) ~ g ~t ( ~ 0  t fl~ ~fl - -  K : M~) (5.6) 
t 

and Eqs. (4.15) and (4.33) that: 

F (h)~a = - N ~ " ( ~ i ' ~  ~ -- v(r, t)) + N~(ma/m)~(~R~  ~ - K .  R)  (5.7) 

where N: is the number of beads making up a molecule of species a. With these 
approximations, the equations may readily be solved and one finds that: 

~f"~  = v(r, t) -- (NB~Pm~F (h)~ + N , ~ m ~ F ( h ) ~ ) / ( N ~ N ~ ' ~ m )  (5.8) 

~R~a = x " R + (Np~PF (h)~a - N ~ ' F ( h ) ~ ) / ( N ~ N t ~  ~) (5.9) 

[Oy ~ ~p = K "My  - (rn(b)~/~ ~) ~V ~ t ~  ~-(h)~ (5.10) 
t 

The Brownian forces are given by Eqs. (4.4) and (4.12). If one uses Eqs. 
(4.18) and (4.20) with the v~ set to a constant value to evaluate these expressions, 
one finds that: 

~ b ) ~  = _ k T  o~_~ ~ l n [ ( g ~ ) - m ~ ( r ~  ' Q~, r ~, QtJ, t)] (5.11) 

F (b~  = - k T  --~ c~r ~-R In ~(~(r ~, Q~, r ~, QP, t) (5.12) 

( mB~ ~ ) 
F (b)tj~ = - k T  ---m~r + ~  In m(2)(.~ - -~av  , Q~, rP, Qa, t) (5.13) 

It then follows from the force balances, Eqs. (4.5) and (4.13), that: 

~i~ "fl = v(r, t) - ( N f l ~ f l m ~ F  (a)a# + N~m~F(") t3" ) / (N~N~:~Pm)  

_kTN~¢~(mO 2 + N~U(m~): a 
N~N,~,~ ,rn  2 ~ In 7t~(r ", Q", r ~, Q', t) 

+ k T N , ~ / ~ m  ~ - N ~ m  ~ 
N ~ N , ~ a m  8R In ~ ( r  ", Q~, r ', Q', t) (5.14) 

~1~ ~ = ~ " R - (N ,~#F (a)~' - N ~ F ( a ) I ~ ) / ( N ~ N , ~ / ~ )  

+ k T  N ~ a m ~ -  N ~ m ¢  ~ In 7~(~(r ~, Q : , r  t~, Qa, t) 

_ k T  N / ~  + N ~  ~ In ~ ( r ' ,  QL r °, Q~, t) (5.15) 

WO~y~ ~ --- x :  M y  + (m(b)~/~ ~) X G,~t 
t 

x[ .~(a '° t~-kZO~sln(g°~, i /2~-I(~(¥a,  aa,  rfl, afl, t ) l  ( 5 . 1 6 ,  

To avoid undue, but interesting, complications associated with "drift" of 
pairs, we will restrict the discussion to the simple case which leads to 
~ a  = v(r, t). For this purpose we will assume that the number densities of the 
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various species, the G,  and the external potentials, the ~b (e), are independent of 
the position coordinate and time. The third term on the left of Eq. (5.14) is then 
zero. We will then assume that: 

U~(~/m ~ = Ue(a/ma (5.17) 

so that the second and last terms are zero. 
When the last set of equations is used in the equation of continuity, Eq. 

(4.32), one finds that: 

0_ ~p~(r~, Q~, ra ' Qa, t) 
Ot 

O • R¢7~(r', Q~, r e, + ~-R" 1¢ Qe, t) + F - kT ip~2~(r, ' Q,, r e, Qe, t) 

oa~' (g~)-l/2 ~p~(r~, a~, re, a~, t) 

+ ~ 0-~ Ic:M'7/~(r ' Q"re' Q"t) 

'}-m(b)B~g--~t GFst ( : , a ) e ~  kT(ge)l/2_@t(gC3e-1/,),~/t(r,,Q,,rF, Qe, t ) ] )  

(5.18) 

where 

and 

N~N~e (5.19) 
= N ~  + G~ 

F N~(~F (a)e~ -- Ne(eF (a)~e O 
. . . .  ~ (a) (5.20) 

Ne~e + N:~ ~ OR 

Equation (5.18) is a generalization of the usual "diffusion equation" for the 
distribution function in the configuration space of a single molecule to an 
analogous equation for the pair configurational distribution function. The usual 
equation for the time evolution of ~P~(r ~, Q~, t) may be obtained from a limiting 
form of the present equation. 

In the limit that the two molecules are far separated, that is, in the limit that 

~P~(r ~, Q~, ra, Qe, t) ~ ~P~(r ~, Q~, t)!Pe(r ~, Q~, t) (5.21) 

and 

~],e ~ ~-~ + ~e)~  (5.22) 
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From these limits, it follows from Eq. (5.18) that: 

0 ~(r~,Q~,t ) t3 { ~_ ~, & + ~ - ~  x'M~P~(r,Q~, t) 

m (b)a [ 
+ t) 

- k T ( g ~ ) m - ~ ( g  )-1/2~(r~, Q~, t) = 0  (5.23) 

where o ~  and ~(e)~ are defined by Eqs. (2.20) and (2.21). This is the usual 
"diffusion equation" in the configuration space of a single molecule (see Eq. 
(16.2-6) of Ref. [1]). 
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